Multicolored forests in complete bipartite graphs
نویسندگان
چکیده
منابع مشابه
Multicolored forests in bipartite decompositions of graphs
We show that in any edge-coloring of the complete graph Kn on n vertices, such that each color class forms a complete bipartite graph, there is a spanning tree of Kn no two of whose edges have the same color. This strengthens a theorem of Graham and Pollak and verifies a conjecture of de Caen. More generally we show that in any edge-coloring of a graph G with p positive and q negative eigenvalu...
متن کاملFork-forests in bi-colored complete bipartite graphs
Motivated by the problem in [6], which studies the relative efficiency of propositional proof systems, 2-edge colorings of complete bipartite graphs are investigated. It is shown that if the edges of G = Kn,n are colored with black and white such that the number of black edges differs from the number of white edges by at most 1, then there are at least n(1 − 1/ √ 2) vertex-disjoint forks with c...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملMulticolored Isomorphic Spanning Trees in Complete Graphs
In this paper, we first prove that if the edges of K2m are properly colored by 2m− 1 colors in such a way that any two colors induce a 2-factor of which each component is a 4-cycle, then K2m can be decomposed into m isomorphic multicolored spanning trees. Consequently, we show that there exist three disjoint isomorphic multicolored spanning trees in any properly (2m−1)-edge-colored K2m for m ≥ 14.
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2001
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(00)00159-x